Build Your Own Powerful Google Suggest Keyword Scraper in Google Collab 

The Ultimate Auto Complete Scraper

I’ll walk you through how to scrape Google Suggest keywords using Python. This simple yet powerful script can fetch autosuggest terms related to a base query, helping you generate keyword ideas in no time. I’ll break down the code into manageable chunks, making it easy for you to understand and implement.

You can also watch how to run and use the code in this video:

I walk you through how to deploy and run the code in this video.

Importing Necessary Libraries

First, let’s import the libraries that we’ll use in this script:

python
Copy code
import requests
from bs4 import BeautifulSoup
import pandas as pd
from google.colab import files
import ipywidgets as widgets
from IPython.display import display
  • requests: This library allows us to send HTTP requests to websites.
  • BeautifulSoup: A library used for parsing HTML and XML documents.
  • pandas: A powerful data manipulation library.
  • files from google.colab: Used to handle file uploads and downloads in Google Colab.
  • widgets and display from ipywidgets and IPython.display: These libraries help create interactive elements in Jupyter notebooks or Google Colab.

You might also be interested in my million backlink case study.

Fetching Google Suggestions

Next, we’ll define a function to fetch Google Suggest terms for a given query:

python
Copy code
def get_google_suggestions(query, hl='en'):
    url = f"https://www.google.com/complete/search?hl={hl}&output=toolbar&q={query}"
    response = requests.get(url)
    response.raise_for_status()
    soup = BeautifulSoup(response.text, 'xml')
    suggestions = [suggestion['data'] for suggestion in soup.find_all('suggestion')]
    return suggestions
  • get_google_suggestions(query, hl=’en’): This function takes a search query and an optional language parameter (hl), constructs the Google Suggest URL, and sends a request to it.
  • requests.get(url): Sends a GET request to the constructed URL.
  • response.raise_for_status(): Checks if the request was successful.
  • BeautifulSoup(response.text, ‘xml’): Parses the XML response.
  • [suggestion[‘data’] for suggestion in soup.find_all(‘suggestion’)]: Extracts the suggested terms from the XML and returns them as a list.

Extending Suggestions

To get a more comprehensive list of suggestions, we can append characters to the base query and fetch additional suggestions:

python
Copy code
def get_extended_suggestions(base_query, hl='en'):
    extended_suggestions = set()
    extended_suggestions.update(get_google_suggestions(base_query, hl))
    for char in 'abcdefghijklmnopqrstuvwxyz':
        extended_suggestions.update(get_google_suggestions(base_query + ' ' + char, hl))
    return list(extended_suggestions)
  • get_extended_suggestions(base_query, hl=’en’): This function generates a set of suggestions by appending each letter of the alphabet to the base query.
  • extended_suggestions.update(): Updates the set with new suggestions, ensuring no duplicates.

Capturing and Displaying Suggestions

We need a function to capture these suggestions and display them neatly:

python
Copy code
def capture_suggestions(header, query, all_suggestions):
    print(f"\n{header}:")
    suggestions = get_extended_suggestions(query)
    all_suggestions[header] = suggestions
    for i, suggestion in enumerate(suggestions, 1):
        print(f"{i}. {suggestion}")
  • capture_suggestions(header, query, all_suggestions): This function captures suggestions, stores them in a dictionary, and prints them.
  • print(f”\n{header}:”): Prints the category header.
  • for i, suggestion in enumerate(suggestions, 1): Iterates through the suggestions and prints each one.

Downloading Suggestions as CSV

To save our suggestions, we’ll define a function to download them as a CSV file:

python
Copy code
def download_csv(button):
    df = pd.DataFrame(dict([(k, pd.Series(v)) for k, v in all_suggestions.items()]))
    csv_filename = "google_suggestions.csv"
    df.to_csv(csv_filename, index=False)
    files.download(csv_filename)
  • download_csv(button): This function converts the suggestions dictionary into a Pandas DataFrame and saves it as a CSV file.
  • pd.DataFrame(dict([(k, pd.Series(v)) for k, v in all_suggestions.items()])): Converts the dictionary into a DataFrame.
  • df.to_csv(csv_filename, index=False): Saves the DataFrame as a CSV file.
  • files.download(csv_filename): Initiates the download of the CSV file.

Running the Script

Let’s put it all together:

python
Copy code
base_query = input("Enter a search query: ")
all_suggestions = {}
capture_suggestions("Google Suggest completions", base_query, all_suggestions)
capture_suggestions("Can questions", "Can " + base_query, all_suggestions)
capture_suggestions("How questions", "How " + base_query, all_suggestions)
capture_suggestions("Where questions", "Where " + base_query, all_suggestions)
capture_suggestions("Versus", base_query + " versus", all_suggestions)
capture_suggestions("For", base_query + " for", all_suggestions)
 
# Create and display the download button
download_button = widgets.Button(description="Download CSV")
download_button.on_click(download_csv)
display(download_button)
  • base_query = input(“Enter a search query: “): Prompts you to enter a base search query.
  • all_suggestions = {}: Initializes an empty dictionary to store the suggestions.
  • capture_suggestions(…): Captures suggestions for different categories by appending various phrases to the base query.
  • download_button = widgets.Button(description=”Download CSV”): Creates a button for downloading the CSV file.
  • download_button.on_click(download_csv): Sets the button to trigger the download_csv function when clicked.
  • display(download_button): Displays the download button in the notebook.

The Complete Google Collab Code 

#Start 

import requests

from bs4 import BeautifulSoup

import pandas as pd

from google.colab import files

import ipywidgets as widgets

from IPython.display import display

def get_google_suggestions(query, hl=’en’):

    url = f”https://www.google.com/complete/search?hl={hl}&output=toolbar&q={query}”

    response = requests.get(url)

    response.raise_for_status()

    soup = BeautifulSoup(response.text, ‘xml’)

    suggestions = [suggestion[‘data’] for suggestion in soup.find_all(‘suggestion’)]

    return suggestions

def get_extended_suggestions(base_query, hl=’en’):

    extended_suggestions = set()

    extended_suggestions.update(get_google_suggestions(base_query, hl))

    for char in ‘abcdefghijklmnopqrstuvwxyz’:

        extended_suggestions.update(get_google_suggestions(base_query + ‘ ‘ + char, hl))

    return list(extended_suggestions)

def capture_suggestions(header, query, all_suggestions):

    print(f”\n{header}:”)

    suggestions = get_extended_suggestions(query)

    all_suggestions[header] = suggestions

    for i, suggestion in enumerate(suggestions, 1):

        print(f”{i}. {suggestion}”)

def download_csv(button):

    df = pd.DataFrame(dict([(k, pd.Series(v)) for k, v in all_suggestions.items()]))

    csv_filename = “google_suggestions.csv”

    df.to_csv(csv_filename, index=False)

    files.download(csv_filename)

base_query = input(“Enter a search query: “)

all_suggestions = {}

capture_suggestions(“Google Suggest completions”, base_query, all_suggestions)

capture_suggestions(“Can questions”, “Can ” + base_query, all_suggestions)

capture_suggestions(“How questions”, “How ” + base_query, all_suggestions)

capture_suggestions(“Where questions”, “Where ” + base_query, all_suggestions)

capture_suggestions(“Versus”, base_query + ” versus”, all_suggestions)

capture_suggestions(“For”, base_query + ” for”, all_suggestions)

# Create and display the download button

download_button = widgets.Button(description=”Download CSV”)

download_button.on_click(download_csv)

display(download_button)

#End

To Use the Code: 

  1. Press play
  2. Enter your main keyword, hit Enter
  3. Wait a bit
  4. Download a CSV list of the keywords 

You will also want to checkout my article on how to code a CustomGPT for SEO.

Subscribe to our newsletter

Get updates and learn from the best.

More to explore

The best MA & NH

Don't play hide-and-seek with people who are searching for you

Lorem ipsum dolor sit amet, consectetur adipiscing elit.